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ABSTRACT 
Often, emotional disorders are overlooked due to their lack of aware-
ness, resulting in potential mental issues. Recent advances in sens-
ing and inference technology provide a viable path to wearable 
facial-expression-based emotion recognition. However, most prior 
work has explored only laboratory settings and few platforms are 
geared towards end-users in everyday lives or provide personalized 
emotional suggestions to promote self-regulation. We present Emo-
Glass, an end-to-end wearable platform that consists of emotion 
detection glasses and an accompanying mobile application. Our 
single-camera-mounted glasses can detect seven facial expressions 
based on partial face images. We conducted a three-day out-of-
lab study (N=15) to evaluate the performance of EmoGlass. We 
iterated on the design of the EmoGlass application for efective 
self-monitoring and awareness of users’ daily emotional states. We 
report quantitative and qualitative fndings, based on which we 
discuss design recommendations for future work on sensing and 
enhancing awareness of emotional health. 

CCS CONCEPTS 
• Human-centered computing → Ubiquitous and mobile com-
puting; Ubiquitous and mobile computing systems and tools. 
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1 INTRODUCTION 
Health psychology, especially psychosomatic/behavioral medicine, 
places a high priority on emotional health [14]. Negative emotions 
experienced over a long period of time may have severe implica-
tions [34, 59] and many emotional problems are left untreated until 
they become mental disorders, afecting nearly one billion peo-
ple worldwide. [46]. Early detection and intervention of emotional 
disorders may have a signifcant impact on people’s health and 
well-being [27]. However, people do not pay much attention to 
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their emotions and the majority seldom seek help [67]. Moreover, 
many people cannot accurately perceive and report their emotions 
[10] and do not have the bandwidth to keep track of their own 
emotions around the clock. 

Such a shortage of efective emotion detection and tracking mech-
anisms presents fertile research opportunities. One potential solu-
tion is to leverage wearable sensing that is becoming increasingly 
low-cost, ubiquitous, safe, and widely acceptable, thus providing a 
promising solution to detect, track and intervene in various health 
problems, ranging from physical health to mental health, including 
emotional health. 

There are fve channels through which emotions can be de-
tected [29]: speech [33], text [49], facial expressions [1], body ges-
tures/movements [6], and physiological states [68]. This paper fo-
cuses on and leverages facial expressions as direct indicators that 
have shown signifcant correlations with emotions and have been 
widely used in emotion-related diagnoses [23, 56, 96]. Prior work 
has explored various wearables supports for facial expression de-
tection, including eyeglasses [57], earphones [18], and necklaces 
[17]. However, most existing systems are confned to laboratories, 
providing few insights on how well they would work in real-world 
settings [75]. Further, these systems did not explore interfaces to 
provide end-users with guidance and feedback in interpreting emo-
tion detection results. Finally, prior work primarily focused on 
technical issues of facial expression recognition, with less attention 
on promoting emotional health based on wearable sensing of facial 
expression. 

To fll these research gaps, we present EmoGlass (Figure 1), an 
end-to-end AI-enabled wearable platform consisting of custom-
designed camera-equipped eyeglasses and a mobile application that 
can detect seven facial expressions, aiming to promote people’s 
awareness of emotional health, enabling them to monitor their 
emotions, and providing personalized guidance for self-regulation. 
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Figure 1: EmoGlass includes two major parts, EmoGlass device and EmoGlass mobile app. The camera-mounted and ACNN-
embedded EmoGlass device is capable of recognizing facial expressions. The companion mobile app is used to enhance users’ 
awareness of emotional health. 

Specifcally, we frst built a wearable device in the form of a pair 
of glasses mounted with a camera and its supporting embedded 
system. To improve the robustness of our system in and out of the 
lab environments, we constructed three datasets from 15 partici-
pants, covering eyeglass remounting, various lighting conditions, 
as well as enhanced naturalness of facial expression. Based on these 
datasets, we developed per-user deep CNN models with attention 
mechanisms (ACNN) for facial expression recognition. We then 
developed a mobile application that allows users to self-monitor 
their emotion states tracked by the EmoGlass device, as aggregated 
and visualized on an hourly/daily/weekly basis. Users can also use 
the application to check and control when the camera is turned 
on/of and use an automatically-scheduled prompt to record their 
emotions and activities into an Emotion Diary, allowing them not 
only to review their emotional history but also to fnd suggestions 
in past activities to boost a positive emotion. 

To validate the performance of the EmoGlass device and the 
frst design iteration of EmoGlass application, we recruited the 

same 15 participants (because currently, EmoGlass’ AI model is 
user-dependent) for a three-day out-of-lab study, where each par-
ticipant wore EmoGlass at least three hours a day outside the lab. 
Participants were prompted every 15 minutes to report their emo-
tions, which we use as ground truth labels. The overall accuracy of 
detecting seven facial expressions is 73.0%. 

In the middle of the study, we reviewed feedback from the frst 
seven participants and designed a second iteration of the Emo-
Glass application to address fve key issues: 1) educating users 
about emotional health; 2) tracking events that trigger emotions 
and behaviors; 3) reminding/suggesting positive triggers to regu-
late emotions; 4) building users’ trust of emotion detection; and 5) 
connecting emotional awareness and emotional health. We then 
deployed the EmoGlass application with the fnal design to the 
remaining eight participants and report qualitative fndings, in-
cluding user perceptions of wearable emotion-sensing, concerns of 
privacy, emotional awareness, and other key observations. 

Overall, the system consists of: 
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• The EmoGlass system — an end-to-end AI-enabled wearable 
platform combining facial expression detection eyeglasses 
and a mobile application to enable self-monitoring of emo-
tions to promote emotional awareness; 

• Three datasets that iteratively extends in-the-lab controlled 
facial expression data with robustness for functioning out-
side controlled environments, including adding varied light-
ing conditions, device remounting, and naturally-occurred 
facial expressions; 

• Iterative designs of the EmoGlass application that goes be-
yond visualizing detected emotions, with interactive features 
such as recording emotion-related activities and recommend-
ing past activities to help users regulate emotion; 

• A three-day, 15-participant out-of-lab study to validate the 
EmoGlass system’s technical performance and its feasibility 
in enabling end-users to self-monitor and regulate emotion. 

The remaining paper is organized as follows (shown in Figure 2). 
Chapter 1 and 2 provide an overview of our study and related work. 
Chapter 3 introduces our hardware platform. The facial expression 
recognition (FER) model we used, describing the methods of data 
collection, model training and evaluation, and the performance 
of our model are described in Chapter 4. Chapter 5 describes the 
app in the frst iteration, while Chapter 6 illustrates the out-of-
lab study we conducted. Chapter 7 presents the initial feedback 
and corresponding design changes from the frst round user study, 
along with overall fndings and design recommendations. Chapter 
8 includes discussions, limitations, and potential future work of our 
study, and Chapter 9 concludes our work. 

2 RELATED WORK 
EmoGlass is at the intersection of three related areas: smart eye-
wear for health sensing, emotion sensing & detection, and facial 
expression recognition on wearables. 

2.1 Smart Eyewear for Health Sensing 
The emergence of wearable devices and sensing technology has 
pushed traditional eHealth out of the clinical setting and has evolved 
into ubiquitous mHealth [36]. Eyewear comes in two main forms: 
eye masks and eyeglasses. 

Health-related eye masks are often used for monitoring sleep 
[54] or critically ill patients. For example, A stroke prognostic tool 
called HealthSOS [37]. However, because eye masks will block users’ 
view, eyeglasses present a greater potential for health sensing on a 
daily basis. 

Eyeglasses trigger wide interests due to the unique wearing lo-
cation, which can easily capture information of one’s face and head 
[83], and its feasibility in the wild [15]. Smart eyeglasses have been 
employed in several application areas, including computer science, 
healthcare, education, industry, service, social science, and agricul-
ture, among which, most attention has been focused on healthcare 
[45]. In addition to disease monitoring, it can also be used for 
monitoring neurological conditions due to its ability to capture 
images of pupils and neural signals. For example, Munusamy et al. 
demonstrated that telemedicine via smart eyeglasses is feasible and 
efective as an alternative to ward rounds for neurocritical ill pa-
tients [62]. Neuroglasses [80] have also been used for monitoring of 

neurodegenerative Parkinson’s diseases [7]. Some researchers use 
eyeglasses to detect eye conditions, e.g., the MEMS-based (micro-
electromechanical systems) wearable eyeglasses, which have ade-
quate sensitivity of retinal arteries and optic disc’s observation for 
the detection of eye diseases [42, 43]. 

Outside of disease monitoring, a number of studies also focus on 
everyday health, most of which are related to diet and exercise. For 
example, Fitbyte — multimodal sensing eyewear — can track diet 
in unrestricted situations [13], which is also available in two other 
smart eyeglasses [35, 93]. On the other hand, exercise monitoring 
is a well-explored area with many mature commercial products 
[86]. For example, SOLOS [81] enables riders to obtain real-time 
data, including speed, cadence, heart rate and power zone. Simi-
larly, Eyesight Raptor [26] can show information such as heart rate 
information. However, to the best of our knowledge, there has been 
little research on smart eyeglasses-based emotional health tracking 
that functions on a daily basis [57]. 

There are eyewear devices that support the measurement of 
mental health-related biomarkers, e.g., measuring the change in 
forehead and nose bridge temperatures in order to assess cognitive 
load [94]. EOG eyeglasses provide out-of-lab cognitive assessment 
function [19] and realize real-time emotion detection from single-
eye images based on eyewear devices [88]. The EmotiGo eyewear 
system uses unobtrusive physiology-based emotion detection [74]. 
However, most of them target emotion sensing, with no further 
analysis of the identifed emotions, such as temporal and statistical 
features, which can be important to emotional health applications. 

2.2 Emotion Sensing & Detection 
Accurately reporting emotion fuctuation is crucial for emotional 
health because psychologists found that identifying and labeling 
emotions is the starting point of emotion regulation [41]. Knowing 
what feelings we are going through can help us fnd suitable physi-
cal and behavioral responses to targeted emotions [12]. However, 
accurately understanding one’s own emotion turns out to be chal-
lenging for many people [84], creating opportunities for wearable 
sensing technologies. 

To detect human emotions, various sensing methods within 
human-computer interaction and afective computing felds are 
widely adopted [77]. Categorized by the source of information, 
there are majorly fve basic methods that are based on facial ex-
pression [4], voice [87], physiological signal [30], text [2] and body 
movement [90]. 

One particular challenge of emotion sensing is to obtain ground 
truth [75]. While human labelling is adopted on large scale databases 
like AFEW [22] and AfdexNet [60], researchers often ask partici-
pants to self-assess emotion and use their reports as ground truth 
[31]. To solve a lack of details [32, 65], researches also use open-
ended questions [55], close-ended questions [64, 79] and scales 
[31]. 

Alternatively, some others have adopted real-time ground truth 
for emotion detection based on facial expressions [18], e.g., full-face 
based detection API [58]. However, this method limits people’s activ-
ity and is unsuitable for out-of-lab study, because they need to make 
sure a user’s face can be captured by the camera. For in-lab-elicited 
emotions, some researchers use multiple methods simultaneously 
to generate ground truths and fnd consensus across methods to 
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Figure 2: Overview of the development and study process of EmoGlass, corresponding to specifc sections in the paper. To be 
specifc, we describe Hardware Design, Facial Expression Recognition, and Mobile APP Design Iteration #1 before Out-of-lab 
Study. In the middle of the Out-of-lab Study, we provided Mobile Application Design Iteration #2 based on interview results. 

increase accuracy. For example, Rattanyu et al. report that they 
adopted the rating of stimuli for ground truth when matched with 
alternative sourced labels [71]. 

Researchers hope to detect people’s emotions in their daily lives, 
instead of in a controlled environment (laboratory setup), as emo-
tions have a special role in people’s daily lives, such as driving 
most decisions [75], afecting social situations [70], and physical 
health [47]. In this case, wearables equipped with pervasive sensors, 
which can be used almost everywhere without afecting normal 
activities, gain wide interests. We intend to fll this gap as we enable 
emotion monitoring via facial expression recognition eyeglasses 
while alleviating the challenges of sensing people’s emotions in the 
feld [78]. 

2.3 Facial Expression Recognition on 
Wearables 

Due to the importance of facial expressions, automatic facial ex-
pression recognition (FER) is now one of the fundamental tasks 
and research focus in computer vision, with an accuracy as high 
as 99.8% [4] on a classic dataset under laboratory-controlled con-
ditions. Nevertheless, it is difcult for wearables to capture the 
frontal face of wearers without blocking their vision. Alternatively, 
researchers have placed cameras on eyeglasses [3, 25], headphones 
[18], and neck pieces [17] to track facial expressions by capturing 
part of or even just the contour of a user’s face. Besides ordinary 
RGB cameras, researchers also use near-infrared cameras [17] to 
detect facial expression. Camera-based sensors need to overcome 
several challenges to achieve FER, including variations of shadows, 
illumination, head pose, and individuals’ facial expressions [76]. 
Other non-RGB cameras, including thermal cameras [48], depth 
cameras [85], and RGB-D cameras [51], are also used for FER, yet 
no research has instrumented these cameras on wearables for facial 
expression recognition. 

To classify facial expressions, or to measure the intensity of each 
facial expression from face images or videos, researchers have used 

a variety of computational models. While some choose to use tradi-
tional methods like dictionary learning [53], many recent methods 
are based on convolutional neural networks (CNN). Researchers 
also use temporal convolution (TCN) [95] or recurrent layers like 
long short-term memory (LSTM) [89] and gated recurrent units 
(GRU) [40] to learn temporal information in the video clips. Notably, 
Li et al. [52] use CNN with an attention mechanism to highlight 
regional features. To understand the way the CNN model detects 
facial expressions, Mousavi et al. [61] used de-convolution to visu-
alize CNN and discussed the invariance, redundancy, and fltering 
for deep networks and compared the representation learned with 
facial action coding system (FACS). 

Prior research has also leveraged low-dimensional multichannel 
sensing techniques to detect facial deformation. For example, Ira-
vantchi et al. [38] used the acoustic interferometry-based mask to 
sense nine-class face gestures with 89.0% accuracy. Photo refective 
sensors [57] and pressure sensors [50, 57] have also been used in 
FER by tracking skin deformation. The accuracy of these methods, 
however, drops of a clif when the device is removed and put back 
on. Masai [57] reported their accuracy based on photo refective sen-
sors mounted smart eyewear decreased by 14.7% from one-time use 
to uses on diferent days. Other wearables leverage bioelectricity, 
such as electromyography (EMG) [30], to sense facial expressions, 
although this method can be easily disturbed by other factors, such 
as blinking and the sensor requires close contact to the skin. For the 
consideration of robustness and comfort (as a wearable component), 
we chose the camera as the sensor. Further, as detailed later, we go 
beyond prior work by proposing a systematic method (based on 
feature analysis of CNN models) to fnd the optimal camera angle. 

3 HARDWARE DESIGN 
Specifcally, the convolution and pooling layers in a CNN play a 
role in extracting features, thus representing feature efectiveness. 
For CNN, reconstructed images indicate features learned, which 
have been commonly used in selecting confgurations that yield 
optimal learning performance and minimal overftting 
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3.1 Form Factor 
3.1.1 Iterative Design of Form Factor. We went through a design 
iteration that yielded three prototypes. The frst iteration (Figure 3a) 
looked like regular eyeglasses with full frames, but we found that 
the frames would easily obscure the images captured by the camera. 
Thus, we designed the second version (Figure 3b), which allowed the 
user to remove the lens. However, we discovered that the weight is 
mostly on the right side of the eyeglass, making it less comfortable 
and unbalanced to wear. To resolve this issue, we placed the battery 
and the control board on separate sides of the eyeglasses, resulting 
in our fnal prototype (Figure 3c). 

3.1.2 The Choice of Camera. There are a few requirements for the 
camera: 1) wide-angle, encompassing as many facial features as 
possible in one image; 2) CSI interface for compatibility with the 
camera interface of Raspberry Pi Zero; 3) autofocus, maintaining 
image quality even when the camera’s position is shifted; and 4) 
small to avoid being obtrusive. Most of-the-shelf IR, RGB-IR, RGB-
D cameras, and endoscopes are difcult to meet all the requirements, 
so we choose an RGB camera, specifcally, a 120-degree wide-angle 
RGB camera module based on OV5647 [66]. 

3.2 Fabrication and Hardware Assembly 
Once the design was fnalized, we 3D printed the eyeglasses’ holder 
for our camera-mounted system using an Ultimaker S5 with PLA. 
To capture visible deformations caused by muscle movement on 
the user’s faces, we positioned the camera (Figure 3c) at the front-
right corner of the eyeglasses pointing towards a wearer’s face. The 
camera sits on an adjustable seat that can be rotated up-down and 
left-right. This connection structure with two degrees of freedom 
makes it easy to adjust camera angles and the resultant captured 
images. The camera is controlled by a Raspberry Pi Zero W with 512 
MB RAM (Figure 3c), capable of transmitting the detection result 
via Wi-Fi or Bluetooth, and loaded with a 32 GB Micro SD card to 
save the recording. The Raspberry Pi Zero W has a BCM2835 SoC 
loaded with one ARM11 core and Broadcom VideoCore IV GPU, 
providing enough computational power to run the deep learning 
model and thus achieve real-time inference. 

The battery is installed on the left side of our eyeglasses (Fig-
ure 3c), using two wires to connect to the devices on the right side, 
as Figure 3c shows. The whole device is powered by a 500 mAh 3.7 V 
replaceable Lithium-polymer cell, regulated by an independent tiny 
DC-DC module to provide 5 V power for Raspberry Pi. Moreover, 
to make it safer and more comfortable to wear, all electronic de-
vices except the part below the lens of the camera are encapsulated 
inside the frame of eyeglasses, which also protected the delicate 
components from being exposed. 

To achieve real-time data display on our mobile application, our 
eyeglasses opportunistically upload data to the server whenever 
connections are established – specifcally when the network is 
reachable and the new data is available. The post-processing steps 
of the model’s prediction, including softmax, denoise, and so on, 
are performed on the phone. 

As the camera is mounted with an adjustable angle, we need to 
determine which angle is optimal for detecting facial expressions. 
One common approach is to compare the accuracy of models trained 

by images from each angle. However, such a method may be model-
dependent and takes a relatively long time to collect data for each 
possible camera angle. 

To achieve a time- and cost-efective angle selection, we con-
ducted a feature analysis based on the visualization of convolutional 
networks. Specifcally, the convolution and pooling layers in a CNN 
play a role in extracting features, thus representing feature efec-
tiveness. For CNN, reconstructed images indicate features learned, 
which have been used in selecting confgurations that yield optimal 
learning performance and minimal overftting [61]. We applied this 
approach in this experiment. Since the layers in the evaluation 
network are also the frst few layers in our fnal model, the efec-
tiveness for feature extraction is the same, allowing us to train a 
smaller model on a smaller dataset and predicting the efectiveness 
of the larger model on the larger dataset. We built a simple CNN 
consisting of fve convolutions with rectifed linear unit activation 
and pooling layers, just like a ResNet with only two blocks and 
without skip connections, followed by FC and softmax to make it a 
classifcation model, and trained on the frames captured, then vi-
sualized using aforementioned deconvolutions method [61, 82, 91]. 
This allowed us to see the quality of the feature extraction (Figure 4) 
that indicate the optimal camera angle. We conducted a pilot study 
with three participants to test fve angles, providing us a diverse set 
of facial features (i.e., “eyes”, “nose” and “mouth”). It took roughly 
three minutes to fnish the data collection for each angle, resulting 
in a total study length of 15 minutes. In the interest of time, partici-
pants only performed three facial expressions: natural, happy, and 
sad. The reconstructed images highlight the facial feature important 
for CNN, which indicated that the area around the eye and mouth 
is rich in features. Therefore, we chose the angle corresponding to 
the third image that the contours of features are most similar to 
those of diferent regions of the face (Figure 4c). 

4 FACIAL EXPRESSION RECOGNITION 

4.1 Data Collection 
To bridge low-cost in-lab data and variable in-the-wild conditions, 
our data collection consists of three iterative experiments: E1) in a 
controlled environment with ample ambient and uniformed light; 
E2) in a controlled environment under lighting from six directions, 
two distances, and two colors; and E3) in a semi-controlled emotion-
triggering environment using videos as stimuli. Building a dataset 
successively in such a three-fold process allows us to quantitatively 
understand how EmoGlass’ facial emotion recognition model can 
adapt to changes caused by lighting (E1 → E2) and the naturalness 
of expression (E1 & E2 → E3). 

We recruited 15 (7M/8F) participants via an intranet notices 
service from a local university, Maдe = 21.1, SDaдe = 1.6. The par-
ticipants come from diferent backgrounds spanning Computer Sci-
ence, Design, Administrative Management, English, Remote Sens-
ing, Pharmacy, Medicine, and Agronomy). Because our EmoGlass 
and normal eyeglasses cannot be worn at the same time, we required 
our participants to have normal vision or could wear contact lenses. 
All the participants signed the consent form before the experiment 
and were paid $50 each in the form of Amazon gift cards. All par-
ticipants went through all three experiments, and a user-specifc 
model was trained and validated for each participant. 
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Figure 3: The three eyeglasses prototypes in our iterative design include (a) the frst version, in which the frames will block 
the view; (b) the second version, in which the weight is unbalanced; (c) the fnal version. The fnal version contains four main 
parts: the camera which is used to capture the partial face, the Raspberry Pi which is used to run the ACNN model, and the 
Lithium Battery which is used to power the system. 

4.1.1 Experiment 1: Controlled environment with uniformed light. 
Based on an approach similar to [69], we used a series of pre-
recorded videos (hereafter referred to as emotion cards) portraying 
facial expressions for the participant to imitate. We used six emotion 
cards, each lasting fve minutes, altogether taking 30 minutes for 
this experiment. 

Before data collection began, we frst introduced and described 
the emotion cards and provided a practice session to help partici-
pants get familiar with each facial expression and the pace of the 
experiment. 

Specifcally, we considered six types of basic emotions (happy, 
sad, disgust, angry, surprised, and fearful) and a neutral state. Psy-
chologist Paul Eckman identifed these six basic emotions were 
universally experienced across all cultures [24] and, most of the 
time, people are in neutral, non-expressionless states. In the ex-
periment, the order of emotion cards is randomized. Participants 
were asked to follow the facial expression shown on the screen. 
Two progress bars were shown on the screen: one was the current 
emotion-imitating progress (5 seconds) and the other tracked the 
progress of the current session. 

In the real world, people might take eyeglasses on and of as 
frequently as they need, which constantly changes the relative posi-
tion of the camera and the face. Therefore, to capture this behavior,
participants were asked to remount the eyeglasses after each ses-
sion. The participants were free to take a break between sessions. 

We deleted data points where facial expressions were interfered 
with by activities such as coughing, swallowing, or licking lips. 

4.1.2 Experiment 2: Controlled environment with varying directional 
light. Lighting efects, which will afect shadow position, image 
color and brightness, signal-to-noise ratio, and so on, have been 
shown to have an impact on image classifcation in facial expression 
recognition [39]. To solve this problem, we built extended the pre-
vious dataset with various lighting efects [44], which is relatively 
reliable and low-cost, because CNN has been proved to have the 
ability to deal with light varying by using more training samples 
[44]. 

This experiment followed the same procedure as the previous 
experiment, except the experimenter had to switch lights during 
the process. In each session, we adjusted the light angle and light 
intensity by repositioning the portable light sources across 12 pre-
defned locations (Figure 5) and changed the light color by toggling 
light settings. Note that, across the 12 locations, there were six 
unique angles (or direction of light) and along each angle the light 
was placed either close or far from the participant (thus varying the 
light intensity based on distance). In total, we had 12 sessions, with 
each session featuring one unique light location and two colors. 

4.1.3 Experiment 3: Semi-controlled emotion-triggering environment. 
Initially, we used emotions as keywords to select 60 videos as stimuli 
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Figure 4: The process to assess camera angle. 1) Small datasets with fve diferent angles are collected (a), then fed into a 
convolutional network (b) for training. 2) We use parameters from the trained model to reconstruct and visualize feature 
(c) using a de-convolution network. 3) We interpret the result by analyzing the similarity of input images and reconstructed 
features and determine the optimal camera angle with the most usable feature. 

Figure 5: The setup of three data collection: a) the setup of the experimental scene, and b) two light colors used in the experi-
ment. 



CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Zihan Yan, Yufei Wu, Yang Zhang, and Xiang ‘Anthony’ Chen 

from YouTube, including 10 videos for each non-neutral expression 
and none for neutral expression because it does not need to be 
triggered. 

Next, four experimenters watched the videos and scored (1-10) 
how much the video can trigger certain facial expressions. Based 
on the scores, we chose the top fve videos with the highest ratings 
for each emotion category and concatenate them to generate a 30 
min stimuli video. We asked the participants to watch the video 
and recorded their emotions using Afectiva API. 

4.2 Ground Truth Acquisition 
To acquire the ground truth of participants’ facial expressions, we 
recorded full-face videos using a separate camera. We did not use 
labels of videos directly because the video pieces might not arouse 
corresponding emotions from the videos’ beginning to end. We then 
performed a temporal segmentation [21] using 68 feature points of 
the face. If the feature points of the two consecutive frames have 
decreased to a pre-defned threshold, we considered that the faces 
corresponding to the two frames exhibited the same expression. 
In this way, we segmented the camera streams by distinct expres-
sions and reduced the amount of data that needed to be labeled. 
There are three common methods to obtain ground truth for facial 
expressions: 1) using the tag of emotion card; 2) using computer-
vision-based facial expression detection API [18], and 3) manual 
labeling by the experimenter. 

We tried all three methods in an early pilot study. First, we 
found several discrepancies in results between the emotion card and 
the API method. Additionally, our participants reported that they 
have difculty imitating the standard facial expressions indicated 
in the emotion cards. Moreover, the API itself also has a limited 
performance (sometimes even failing to detect faces). As a result, 
we eventually used emotion cards and API methods as a fltering 
process. These two ground truths’ labeled ground truths were used 
only when they agreed with each other; the remaining instances 
were manually labeled (i.e., the third method). 

4.3 Image Pre-processing and Data 
Augmentation 

Since the eyeglasses may shift during uses and users might often 
remount eyeglasses in their daily lives, we prepossessed each im-
age to incorporate such variances. Specifcally, we frst applied a 
threshold and morphological calculations on the gray-scaled image 
(Figure 6b) to extract the dim part in the images, including pupils, 
hair, and shadows (Figure 6c). We calculated connected components 
in the image and used a position-and-area-related weighing func-
tion to choose the most appropriate component (Figure 6d). We 
used another weighing function to calculate the position of two key 
points (at the corner of eyes, Figure 6e, Figure 6f). The image is then 
positioned according to the position of two key points(Figure 6g). 
We applied a rectangle-shaped mask to remove the efect of edge 
areas and histogram-scaled to lessen the efect of the luminaries’ 
environment (Figure 6h). We also resized the image into 224x224 
(Figure 6i). 

Our data augmentation increased the robustness against camera 
angle changes due to motion. Specifcally, we applied afne trans-
formation on our dataset to enlarge the dataset itself with enough 

noise while not increasing experiment time. The afne transform 
we applied is constructed from a scaling (scaling factor range from 
0.8 to 1.2, distributed uniformly) with 60% probability, a rotating 
(six degrees at most in both directions, distributed uniformly) with 
60% probability, and a translating (30 pixels at most in both axes, 
distributed uniformly) with a 60% probability. 

Through the pilot study, we found that the color of ambient light 
will create a halo of color around the image for the light tint. Due 
to the complexity of the light color, we chose to augment the data 
set by using some virtual light efect overlay, including random 
(linear) color correction and random gamma correction. 

4.4 Deep Learning pipeline 
4.4.1 Model selection. Because the main part of the image is the 
cheek that cannot provide much helpful information, assigning 
diferent weights to diferent areas is important to highlight regional 
features. We add regional CNNs with an attention net to calculate 
the attention (weight) based on the work of [52] to make it an 
ACNN and enable the ability to highlight regional features. 

4.4.2 Network Architecture. The model we used is based on the 
work of [52], which added regional CNN to generate regional fea-
ture embedding by using a pre-defned deterministic method (re-
gions around specifc key points in face mesh in their case) besides 
global feature embedding. We replaced the VGG-16 backbone in 
the model [52] with ResNet-18 to reduce parameter count, and 
adopt fxed-position windows to capture regional features since 
the camera we used is mounted on participants’ heads and stayed 
at a constant relative position. We reused the frst few blocks from 
ResNet-18, including the initial convolution and pooling layers and 
four basic residual blocks, which encode a three-channel 224x224 
image into a feature vector sized 128x28x28. To better focus on 
regional features such as mouth and eyes features, we created eight 
diferent windows sized 128x12x12 separating in the feature space 
(see Figure 7b) and use two two-layer residual blocks (the parame-
ter of blocks is independent across diferent windows) to extract 
regional features within the region. An attention net consisting 
of pooling and convolution is used to learn the attention within 
the region. We use sigmoid to normalize the calculated attention 
value and use the value to weigh (to multiply) the features. We also 
used another unit including residual blocks and another attention 
net to use global features. The result of the global unit and eight 
regional units are concatenated, and a linear layer is used to encode 
the feature into a 1024-value vector. 

A fnal linear layer and So f tmax operator are used to make the 
classifcation. We used batch normalization after each convolution 
in the network to help the training. The initial parameters of our 
model are given randomly. 

4.5 Training & Validation 
We trained and evaluated models on multiple datasets and tested 
the efectiveness of transfer learning techniques to increase the 
robustness of models based on a controlled and semi-controlled 
setting. For validation sets, we chose the data from the last session 
in experiment 1 and experiment 2, and the 17% data from the tail 
in experiment 3 (referred to as V1, V2, and V3, respectively). The 
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Figure 6: Image pre-processing workfow. To locate the key points (f) from input (a), we apply threshold (c) on the grayscaled 
image (b) then choose the eyes component (d) and locate the key points using weighing function (e). We correct the displace-
ment and rotation of the image (g), equalize the light (h), and adjust the size (i). 

Figure 7: Network architecture. a) the ResNet backbone, b) the decomposition of pictures, c) the attention blocks. 

optimizer we used for this network is Adam, with the cosine an-
nealing learning rate scheduler. We used cross-entropy to represent 
classifcation loss. 

We frst trained our per-user models (referred to as M1) for all 
15 participants independently with random initial parameters on 
the dataset collected in experiment 1 (T1) and validate the result 
on all three validation sets (V1, V2, V3). The result is presented in 
and Table 1 (detailed accuracy data for each participant is provided 
in the appendix). Across all 15 participants, M1 achieves 85.0% 
accuracy (SD=7.9%) on the validation set from experiment 1 (V1). 
The highest accuracy is 97.1% (from P11). There are four accuracy 
lower than 80% (68.1% for P9, 73.9% for P10, 76.0% for P5, 79.4% for 
P8). The median accuracy is 88.1%. 

We then transferred M1 onto experiment 2’s dataset (T2), train-
ing a new model M2. We validated M2 on the second validation 
set (V2). V2 reached an accuracy of 80.6% across 15 participants, 
both signifcantly below M1 on V2 (note that T2 and V2 come from 
experiment 2, while M1 is trained on T1 from experiment 1). This 
suggests that it becomes more difcult to distinguish between emo-
tions when the lighting is not the same. This result suggests that by 
transfer learning, we can transfer the efectiveness in a controlled 
laboratory environment into the efectiveness in a less-controlled 
environment just by adding a certain amount of extra data (even 
though this extra data alone cannot train a new model from scratch). 

In the third step, we transferred M2 onto the third experiment’s 
dataset (T3), and validated it on the third validation set (V3). The 
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Accuracy on V1 Accuracy on V2 Accuracy on V3 
trained on T1 85.0% (SD=7.9%) 71.6% (SD=11.1%) 62.2% (SD=8.4%) 

transferred onto T2 / 80.6% (SD=8.1%) 64.5% (SD=8.7%) 
transferred onto T3 / / 80.9% (SD=9.1%) 

Table 1: Average accuracy on the dataset. We trained the model on training set 1 (T1) and transferred on training set 2 (T2) 
and later training set 3 (T3). The accuracy is calculated on validation sets (V1, V2 and V3). The accuracy trends in the fgure 
illustrate the need to collect data sets for diferent lighting conditions and natural expressions. 

mean accuracy reached 80.9%, which is close to the mean accuracy 
on the second experiment. However, the worst accuracy is only 
57.0% (P15), while the highest accuracy hits 98.0% (P4). The standard 
deviation of accuracy is 9.1%, higher than that in both experiment 1 
(7.9%) and experiment 2 (8.1%). One explanation is that the accuracy 
in this section is afected by 1) the diferences between controlled 
(following emotion cards) and naturally-occurring (triggered by 
YouTube videos) facial expressions and 2) the unbalanced number 
of samples in diferent categories of expressions, since each partici-
pant’s amount of facial expression could be quite diferent even as 
they watched the same video clip. 

Figure 8: Average confusion matrix for the frst model val-
idated on the frst validation set. We averaged each item in 
the confusion matrix for each participant and then normal-
ize the array. 

We also validated M1 on V2 + V3 and validated the M2 on V3 
as a baseline for transfer learning. Theoretically, transfer learning 
should help the model adapt to a new dataset without too many 
samples and training costs and result in a rise in the accuracy on the 
same validation dataset. However, we were surprised to fnd that the 
accuracy of the second validation set dropped after transfer learning 
on T2 for P4 (86.8% to 84.6%) and P11 (73.3% to 64.3%), though the 
average accuracy of all participants increased from 71.6% to 80.6%. 
One possible explanation could be that some participants might 

have followed emotion cards diferently in experiment 2 due to 
fatigue or other factors. On V3, M1 and M2 reach a mean accuracy of 
62.2% and 64.5%, respectively. In comparison, after transfer learning, 
M3 on V3 reaches the mean accuracy of 80.8%. Such an increase 
suggests how T3 made a major diference in transferring models 
originally trained on T1 and T2. 

Notably, the distribution of accuracy of the third dataset T3, 
which includes more natural facial expressions, is signifcantly cor-
related with the accuracy of only trained on emotion cards (Pearson 
correlation, R=0.6288, p=0.012<0.05), suggesting the dataset we col-
lected plays an important role in improving the accuracy of sensing 
human’s facial expression in their daily life. 

5 MOBILE APP DESIGN: ITERATION #1 
We describe our initial design and implementation of the EmoGlass 
mobile application (Figure 9), which we used for the subsequent 
out-of-lab study and iterated later with the frst seven participants. 
As shown in Figure 9, this frst version of the EmoGlass application 
consists of the following functionalities: 

• Start/stop control of the device is accessible on the home 
page and the recording page. The home page (Figure 9a) 
allows users to either start the recording by pressing the 
start button, or view the recorded data by selecting a date in 
the calendar. The recording page is shown when users are 
actively recording their expressions. Users can press the end 
button to stop the recording. 

• Emotion stats is presented with diferent presentation and 
scale. Weekly report page (Figure 9b) provides line chart 
visualizations of weekly data, while also presenting the aver-
age proportion of occurrence for each emotion on each day 
as the vertical axis. 

• Daily report page (Figure 9c and Figure 9d) illustrates emo-
tion data within a day in various visualizations including 
a polygon graph, a line chart, and a qualitative evaluation 
report that describes the emotion comprehensively. The see 
more button at the bottom allows users to check detailed 
information within the specifc hour at the date. Specifc 
time page (Figure 9e) presents the intensity of each emotion 
within the specifc hour as a line graph with a granularity of 
one minute. 

• Prompt and diary Probe page (Figure 9f) asks users to 
choose an emotion that best represents their emotion at the 
time, which we use to assess the accuracy in the out-of-lab 
study and also to compose the Diary page (Figure 9g) that 
renders the recorded emotion diary for viewing later. The 

https://p=0.012<0.05
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Figure 9: EmoGlass workfow with initial UI design. a) The home page, b) Weekly report page, c) & d) Daily report page, e) 
Specifc time page, f) Probe page, g) Diary page, and h) Help and suggestion page. 

probe page pops up every 15 minutes during the out-of-lab on both iOS and Android platforms. To improve the ofine perfor-
study. mance of our app, we cached the latest statistics and provided users 

• Help and suggestions page (Figure 9h) provides general information of their connection history and status, for example, 
guidance and suggestions to users to further learn about and “last seen 1.5 hours ago”. 
adjust their emotional health. 

6 OUT-OF-LAB STUDY When each user opened the application for the frst time, we 
used the unique ID of the user to register on the application. The To investigate the feasibility of EmoGlass, we conducted an out-
application was built using React Native and Expo could be run of-lab study that frst evaluated the facial expression recognition 

performance of EmoGlass given the out-of-lab scenarios. Next, we 
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leveraged feedback from seven participants to iterate our mobile 
application design. Finally, we deployed the redesigned application 
and collected more feedbacks, reported as overall fndings and 
design recommendations. 

We recruited the same 15 participants from the data collection 
experiments. We provided each participant with one EmoGlass 
device and two rechargeable lithium batteries. We helped them 
install EmoGlass mobile application on their phone. It is worth 
mentioning that we divided 15 participants into two groups — seven 
participants using mobile application iteration #1 and the other 
eight using mobile application iteration #2. 

The out-of-lab study consists of several key steps: 
• Introduction. We kicked of the study by introducing the 
background and motivation of EmoGlass to each participant. 
Participants then flled out a survey for collecting their demo-
graphic and general emotional health-related information. 
Then we introduced them to how to use the EmoGlass de-
vice and mobile application. Moreover, we told them to keep 
the camera location as consistent as possible and make sure 
there is a Wi-Fi connection during usage. By observing the 
user records on the app’s backend server, we monitored the 
application use situation of participants. 

• Out-of-lab sessions. Following the introduction, we asked 
each participant to use EmoGlass for at least three hours per 
day for the next three days. They could choose wherever 
they would want to wear EmoGlass. They were also free 
to remount the EmoGlass during that period. We reminded 
them to replace the battery before it ran out (after around one 
hour of use). Following an experience sampling approach, 
a pop-up menu showed up in our app every 15 minutes, 
prompting users to tag their current emotions. 

• Post-study interview. At the end of the three days, we met 
with participants again and conducted a semi-structured 
interview asking about their experience and feedback. The 
interview was structured around fve high-level topics: 1) 
Notion of emotional health, 2) Self-perception of emotional 
Fluctuation, 3) Wearable sensors, 4) Mobile application, and 
5) The overall end-to-end platform. 

7 RESULTS & FINDINGS 

7.1 Facial Expression Recognition: Technical 
Performance 

During the three-day-long out-of-lab study, 36 prompts were given 
to each participant when they were wearing the device. Note that 
we paused the experience sampling when eyeglasses were of the 
participants. We used the labels provided by participants as ground 
truth data points, which were used in calculating the facial expres-
sion recognition accuracy (Figure 11a). The average accuracy across 
15 participants is 73.0% (SD=18.0%, Median=80.6%). 

Notably, three participants yielded accuracies below 50%, namely 
P4 (47.2%), P11 (44.4%), and P15 (30.6%). According to their self-
report, P4 walked on darker roads at night for almost 20 minutes, 
P11 felt uncomfortable with the glasses and adjusted the position 
of the glasses several times, and P15 reported that he took some 
conference calls while wearing glasses. Because our device cannot 
provide them with accurate emotional detection feedback, to avoid 

introducing bias caused by sensing inaccuracy, we excluded these 
three participants later in the qualitative analysis. 

We collected 224 samples in total, including 115 neutral-marked, 
69 happy-marked, and 19 sad-marked samples. Figure 11b shows 
the percentages of expressions in our collected samples. F1 scores 
for each class (for all participants) are given in Figure 10. 

Figure 10: F1 score of facial expression recognition in the 
out-of-lab study. 

There are several possible reasons for such a low accuracy. For P4 
and P15, the accuracy of the validation set in the third dataset is ei-
ther signifcantly too high (98.0% for P4, Z-score=1.87, p=0.031<0.05) 
or signifcantly too low (57.0% for P15, Z score=-2.62, p=0.004<0.05), 
suggesting the model may be overftting on that dataset (for P4) or 
failed to learn enough features (for P15). For P11, the accuracy on 
validation sets is 84.3% (Z score=0.37, p=0.710935, not signifcantly 
out of the population). 

For P11, in T3-V3, the accuracy for neutral is 67.1%, quite low 
compared with happy (98.0%) and surprise (95.2%). In the out-of-lab 
study, P11 reported 17 happy, 16 neutral, 2 anger and 1 surprised 
emotion in total. The trained model successfully identifed 15 happy 
prompts out of 17, but misclassifed all neutral prompts as sad, 
which caused the overall accuracy to drop to 44.4%. One possible 
explanation is that the Afectiva API we used for ground truth labels 
in experiment 1, 2 and 3 may have misinterpreted the expression 
for sad for P11. 

7.2 Mobile App Design: Initial Feedback and 
Iteration #2 

In the middle of the out-of-lab study, we gathered and analyzed 
seven participants’ feedback and designed the second iteration of 
the mobile application. We describe below what we learned during 
the interview and how we adjusted our mobile application. 

7.2.1 The need for educating users about emotional health. We 
found that most participants had an incomprehensive understand-
ing of emotional health. First, participants tended to focus only 
on the manifestations of emotions. For example, P2 said, “Being 
able to express all kinds of emotions is emotional health”. Second, 
participants sometimes overly emphasized emotional stability. P6 
said, “Emotional health is mainly emotional stability, without too 
much volatility”. Additionally, we found that participants tended to 

https://score=0.37
https://p=0.004<0.05
https://score=-2.62
https://p=0.031<0.05
https://Z-score=1.87
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Figure 11: (a) Accuracy of facial expression recognition in the out-of-lab study, accuracy lower than 50% (P4, P11, P15) is marked 
in purple color (b) the average distribution of participants’ prompted emotions. 

Figure 12: Added feature in EmoGlass Mobile App in Iteration #2, including a) a new landing page with the description of 
emotional health, b) a new page for tagging triggers on the emotion graph, c) a help page for emotion regulation help by using 
recorded triggers, d) a new page providing real-time prediction function, and e) a new page for self-diagnostic advice. 

neglect the ability to regulate emotions as part of emotional health. 
Only P5, P7 and P3 mentioned that emotional health includes al-
lowing ourselves to adjust by not dwelling on negative emotions 
for too long. Moreover, participants neglected the control of be-
havior. Only P7 reported that “Emotional health is about not being 
immersed in negative emotions for too long and not developing 
into negative behaviors”. Furthermore, we found that participants 
lacked the knowledge of how awareness of one’s emotion might 
play an important role in assessing and improving one’s emotional 
health, and the go-to solution was always “getting an evaluation 
with a psychologist” or “fll out a survey”. 

• Design Change #1: an introduction of what emotional 
health is and is not (Figure 12a), which presents the def-
inition of emotional health and clarifcations of common 
misconceptions found in participants’ responses. 

7.2.2 Visualizing emotion is not enough. Users need to be contextu-
alized with triggers and bodily responses. Some participants tended 

to associate their emotions with reasons of emotion triggering. For 
example, P5 reported, “My emotion is easily afected by life pressure 
and academic pressure. If I have many deadlines today, I will feel 
like I am not well today.” Most participants mentioned that, to be 
aware of past emotions, they need to recall what happened during 
that period. For instance, P2 said, “I think my worst month of the 
year was exam month.” Some other participants mentioned that 
they only noticed their emotions when their negative emotions 
built up enough to afect their behaviors. For instance, P7 said, “I 
tend to analyze emotions on the basis of my bodily response. If 
I do not move all day and feel sluggish, I know I feel blue.” P8 
and P9 reported that they do not want to chat with anyone when 
they are down. However, no participants could fully recall and 
connect events to form a clear and complete mapping of emotion 
triggers—emotion—bodily response. 

• Design change #2: ’Emotion Diary’ for recording emo-
tion triggers (Figure 12b) when checking daily report. 
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Specifcally, a user can select a certain period on the emo-
tion fuctuation graph to tag particular emotions. A prompt 
will guide the user to write a description for this event and 
upload corresponding pictures if needed. Compared with 
prompt-based activity recording, this design is much more 
convenient and non-disruptive, as the user does not need 
to respond to the prompt throughout the day. Besides, this 
function can also help users to keep track of little things 
that go unnoticed when happening. For instance, P12 said, 
“When I saw the daily report, especially some emotions that 
match with what I expected. I would rack my brain to recall 
what happened during that time. In the process, I found some 
happiness that I had overlooked.” 

7.2.3 Reminding/suggesting positive activities to regulate emotions. 
Participants noted there were recurring emotion triggers. P7 said, 
“I always feel [the same] when encountered with same incidents 
over and over again. However, I cannot realize it in time. If Emo-
Glass can record similar incidents and advise me to change my 
response, my overall emotional condition could be improved.” How-
ever, participants rarely made use of such recurring events, e.g., 
taking actions that had been shown before to result in positive 
emotions. Unlike physical health that can be improved under some 
general suggestions, the approaches that make people happy are 
somewhat personally diferent, yet some participants would look 
for general guidance rather than their personal history for help. 
P1 said, “I have searched for them on the Internet, but it seems 
just work for others except for me.” P6 said, “I do not remember 
what kinds of things can make me happy again, nothing, nothing 
at all.” It could be difcult to re-trigger happiness when one is in a 
low emotion, thus recording and reusing positive-emotion-related 
episodes might be helpful. 

• Design change #3: Help-Remind (Figure 12c) supports 
users by reminding them of activities that happened 
during their previous positive emotion. To get sugges-
tions about what to do for promoting positive emotions, a 
user can search by keywords (e.g., happiness) what actions 
were recorded in the past. 

7.2.4 The trust of emotion detection. Some participants with a 
technical background (e.g., P9) mentioned that they understood how 
EmoGlass works. However, other participants expressed doubts, 
because they do not think the facial expression can always represent 
the underlying emotions, especially in the public scenes, and six 
emotion is not able to cover all human emotions. For example, 
P3 said, “Emotions are a complicated thing. I feel that the facial 
expression refects the emotion that people want to express, not 
the true emotion”. We also asked our participants who had doubts 
whether they trusted other health sensing wearables. P5 said, “At 
the beginning, I also did not trust sports bracelets. I just used them 
for fun. However, one night at 12 o ’clock, my teacher suddenly 
advanced the deadline of the assignment, and I found that my 
exercise bracelet showed that my blood pressure rose instantly. This 
case, consistent with my expectation, made me believe in sports 
bracelets”. A few other participants also mentioned that their trust 
in the results depended on whether the device’s feedback matched
their expectations during the period when they knew exactly what 
their status was. 

Besides, P1 said some feedback and interaction can improve 
users’ trust, “I trust Apple Watch because when I click the button to 
measure heart rate, the watch will vibrate after one minute, which 
gives me a feeling that the watch indeed measures my heart rate 
carefully.” 

• Design change #4: Real-time detection (Figure 12d) al-
lows users to check what EmoGlass thinks their emo-
tion is around this very moment. 

7.2.5 Connecting emotional awareness and emotional health. Emo-
Glass aims at enhancing people’s awareness of their emotions, 
which is critical for maintaining emotional health. However, some 
participants were unsure about the diference between these two 
concepts, i.e., how to judge emotional health according to EmoGlass’ 
emotion detection and quantitative reports. For example, P14 asked 
if “The mobile can tell me the ups and downs of my emotion, and it 
can tell me how my emotion has changed in a long time, but I think 
it’s more like emotion management.” P10 asked for a more detailed 
description, “If I’m having a bad day and I get angry ... it could be a 
sign of emotional health because I’m working through my negative 
emotions.” P2, P7, P8 also asked similar questions about how to 
identify emotional health problems. 

• Design change #5: the Self-refecting feature (Figure 12e) 
presents guidance for users to further perform self-
diagnosis of their emotional health, which goes beyond 
showing emotional detection results by providing more in-
formation about signs of emotional unhealthiness. 

7.3 Feedback to Mobile App Redesign, Overall 
Findings, and Design Recommendations 

As we report fndings after we deployed the redesigned application 
to the remaining eight participants, we highlight insights specifc 
to design changes added in the second iteration as bold texts in 
parentheses. Overall, participants responded positively to the idea 
of EmoGlass, including a systematic exposure to the concept of emo-
tional health (Intro to Emotional Health & Self-Refection), the 
availability of emotional awareness integrated into wearables, rich 
feedback, visualizations, and interactive features (Help-Remind 
& Emotion Diary-Record) in the mobile application that goes 
beyond traditional measuring methods (e.g., survey). 

7.3.1 How did participants respond to using wearables for emotion 
detection? All participants recognized the value of using wearable 
devices to detect emotions. They felt the detection mechanism is 
more transparent, as P2 said, “I can understand the working mech-
anism of wearables and the way it produces results, so I am more 
willing to believe it than traditional scales.” However, before we 
add the real-time function, it was a little hard for non-technical 
participants to understand the system. P9, P14, and P13 mentioned 
that the real-time prediction function gives them a clear sense of 
how each data point is generated (Real-Time Prediction). Over 
half of the participants mentioned the convenience of wearables. 
For example, P3 said, “It is troublesome to fll out a form and go 
to the doctor. However, if I have wearables, the only thing I need 
to do is wearing them.” P8 said, “I used an emotion management 
app before, but I had to manually input all the emotions. It was 
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so troublesome that I didn’t want to use it after a few days. Emo-
Glass is very convenient” (Emotion Diary-Record). P6 said, “The 
report of wearables has exact numbers, which is more nuanced 
than scale or other methods”. P7 mentioned the value of identifying 
problems early on — “Many people do not take the initiative to 
assess their emotional problem until it is serious enough to realize 
it. But wearables are a timely reminder.” 

Some participants also showed their concern towards wearables: 
1) The presence of wearables might change people’s behavior. P1 
said,“ If a user understands the logic of the product and prefers to be 
healthy, they will subconsciously hide their genuine emotions by 
expression suppression.” 2) The competitive relationship between 
wearables. P14 said, “Diferent wearable devices, similar in form, 
each has only a few functions. But there is usually only one type of 
wearable that users are willing to use.” 3) Social appropriateness. 
More than half of the participants mentioned they are not willing 
to wear such eyeglasses on social occasions, for example, meeting 
with people at work. 

• Design recommendations. A wearable emotional sensor 
can provide access to rich behavior data always available, 
but the form factor needs to be as lightweight as possible 
to minimize how many users notice the device. One idea is 
making it modular, e.g., the EmoGlass device can be iterated 
as an accessory to regular eyeglasses or other smart eyewear. 
Finally, due to the sensitive nature of emotion sensing, the 
wearable should be easy and quick to turn of on certain 
social occasions. 

7.3.2 How was participants’ concern of privacy? When designing 
the hardware, we consider the privacy issue: 1) We positioned the 
camera so that it mostly captures the face, not the environment. 
Before the experiment began, the participants were shown images 
from the camera to ensure that no sensitive information would be 
captured. 2) The server, which is used to ease connectivity problems, 
does not parse the data, and the results calculated by the Raspberry 
Pi model are directly sent to and analyzed on the user’s phone. 

However, three participants still had concerns, even though they 
knew the cameras would capture only partial faces. P1 said, “I’m 
afraid to go to the bathroom with these camera eyeglasses. What if 
they slip of and the camera changes direction?” P7 and P13 also 
expressed the same concerns about the change of camera angle 
during long-term use and suggested that “maybe you can add a 
function on the mobile application, allowing users to check the 
picture captured by the camera whenever they want.” 

Thirteen participants mentioned their concerns about data leak-
age — it was not the face images they were worried about but the 
emotional data. For example, P5 asked, “Can data be transferred 
without going through the server?” P12 suggested that “Maybe you 
can make the eyeglasses work ofine. In this case, I will be more 
willing to use it”. 

• Design recommendations. Besides adopting best practices 
for protecting users’ privacy (which EmoGlass already did), 
it is also important to show and explain to users how such 
privacy-protecting mechanisms work, e.g., allowing users to 
see what is or has been recorded and showing how data is 
directly transmitted between the glasses and the phone. 

7.3.3 How was participants’ emotional awareness? First, EmoGlass 
enabled participants to periodically refect on their emotions. P2, 
P8, P10 mentioned that when they see the daily report, they would 
analyze why the emotion of the day was the way it was and what 
transpired. Some participants said that, later in the experiment, they 
would actively compare their emotions with those of the previous 
days to see any abnormalities. For instance, P3 said, “I really like 
the weekly report, I can compare the data before and after. Maybe 
you can provide a monthly report, it will be interesting.” 

Second, most of the participants found EmoGlass’s detection and 
visualization helpful and informative. For example, P1 and P14 who 
self-reported being overly sensitive mentioned that after seeing 
their daily emotion report, they recalled what happened at each 
emotion turning point to refect on emotionally-related events. In 
this way, EmoGlass enabled them to be more mindful about their 
emotional sensitivity. Three participants reported that the appli-
cation recorded some of their unintentional emotion fuctuations. 
P3 said, “I thought I enjoyed being alone, but I found that when 
I was working overtime alone, a colleague suddenly came to me. 
Even though we don’t know each other very well, I actually smiled 
for a long time. Maybe the company made me happy”) (Emotion 
Diary-Record). 

• Design recommendations. Finally, participants also iden-
tifed needs for new emotion sensing functionalities that can 
be added to EmoGlass. P13 found that EmoGlass can pro-
vide very direct feedback about emotion, however, currently 
there is no support for sensing a mixture of emotions such 
as boring and agitated, and hidden emotions, which are not 
shown on the face. Some users also had higher expectations 
for EmoGlass. P12 said, “I feel that EmoGlass can further 
strengthen the guiding function ... Perhaps the ultimate goal 
of EmoGlass is not necessarily to keep people dependent 
on the EmoGlass but to guide behavior and enable users 
to have self-awareness.” Future design can involve other 
“of-device” activities, e.g., expressive writing, to help users 
gain independence in maintaining awareness of their own 
emotions. 

7.3.4 Would participants use EmoGlass in their daily lives? The 
six participants reported that they would habitually use EmoGlass 
in their daily life as a reference for tracking their emotions over 
time and as a preventative tool, since they did not know when they 
might have emotional issues in the future. The other participants 
mentioned that they would prefer using EmoGlass only in specifc 
scenarios. For example, P7 reported that he would only use Emo-
Glass in private places because, in these situations, he will be more 
relaxed to release his emotions instead of suppressing them due to 
social considerations. P1 would use our system in social situations 
to check whether his facial expressions are socially appropriate. 
P4 proposed that we set up service sites of EmoGlass in schools 
or shopping malls and let people try them out for a while instead 
of long-term use to democratize the notion of emotional health 
for more people. Three participants reported a surprising usage 
scenario — informing others how they feel by using this applica-
tion. For example, P2 said, “My boyfriend has no idea about my 
emotion. Sometimes I tell him I’m angry, but he doesn’t believe me. 
If I had this application, I’d send him a screenshot of my emotion 
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report when I got mad.” The other two participants also expressed 
their desire for promoting empathy via sharing emotion using our 
system. 

• Design recommendations. Given the various preferred 
ways of using EmoGlass, future design can incorporate per-
sonalized modes, such as a “private” mode that only turns on 
the device in private locations, a “social” mode that indicates, 
in real-time, the user’s facial expression, and a “sharing” 
mode that notifes closed ones when certain emotions occur. 

8 DISCUSSIONS, LIMITATIONS AND FUTURE 
WORK 

In the out-of-lab study, we chose an experience sampling frequency 
of one prompt every 15 minutes for not wanting to interrupt partic-
ipants’ daily activities. However, this sampling is relatively sparse, 
which yielded much fewer data points than ones collected in con-
trolled environments. The amount of data needed to achieve statis-
tical signifcance needs to be increased, which we hope to explore 
in the future with long-term deployment studies of EmoGlass with 
a larger user base. 

We also do not set detailed scenes for the out-of-lab study. We 
let participants act in accordance with their normal behavior and 
daily settings. However, such an approach is prone to error. For 
example, being in the dark or chatting for long periods of time 
can signifcantly decrease the detection accuracy of our platform. 
Moreover, it made us miss an opportunity to gain more insights 
into other factors, such as social norms. In the future, we can give 
more detailed tasks, including working in public places or staying 
alone at home, etc. 

Additionally, our facial expression detection is based on sensing 
local regions of users’ faces. In comparison, another mainstream 
approach, which is sensing face contours, has several innate short-
comings. First, the camera needs to be strategically angled to have a 
feld of view that includes both the user’s face and the background. 
Having both faces and backgrounds in captured video feeds might 
result in technical difculties in foreground-background separa-
tions and privacy concerns for users. However, sensing face regions 
has their own set of drawbacks, the accuracy is not so high due 
to the relatively small sensing area, which we hope to mitigate by 
exploring future work that can be innately more robust at sensing 
faces, such as using depth cameras. 

Although the current accuracy does not seem high enough for 
real-world applications and only a small portion of participants 
would continue to use the system, most users liked our concept. We 
believe that the EmoGlass platform can appear more user-friendly 
by refning the hardware and algorithm. Although this is only a 
preliminary attempt, our result can support that the method we 
proposed is better than visualizing data only, and can truly trigger 
people’s emotional awareness rather than just inform results. Our 
design fndings also lay a foundation to further sensing system 
design in the emotion-related felds, such as afective computing. 
Besides, by using end-to-end concept [92], our work goes beyond 
monitoring and visualization, and tried to guide the change of 
perception and thus lead to the change of behaviors [28, 63]. In this 
case, our platform might be a solution to overcome people’s over-
relying on AI [16], which might exert long-term use of monitoring
wearables. Furthermore, our system can contribute to other topics, 

such as emoji typing, silent speech, eye-tracking-based attention 
measurement, and mHealth monitoring. 

It is well-known that Deep Learning requires a large amount 
of training data, which we achieved via our three-part iterative 
data collection studies. We found user-dependent models to be 
most efective, as diferent individuals’ facial expressions might 
difer signifcantly. However, this process requires calibrations that 
demand user eforts. To mitigate this issue, we hope to explore 
leveraging synthesized data from virtual cameras and textured 
3D models of users’ faces, which can be easily built with depth-
sensing techniques (e.g. Apple Face ID and LiDAR). We envision 
that EmoGlass can easily fne-tune its model parameters using 
data synthesized from end users’ face models during a brief initial 
calibration. Additionally, we plan to build user-independent models 
that can work across users without calibrations for use scenarios 
that require readily available emotion detection and logging. 

Figure 13: We envision future extension of our work 
retroftting to a wide array of garments and jewelries, such 
as a cap. 

We acknowledge that EmoGlass’ hardware platform has much 
room to improve. First, the power conception can be optimized by 
implementing energy-aware scheduling (e.g., entering sleep mode 
when no environmental stimuli are detected). It is also possible to 
leverage solar cells to harvest energy from ambient lights. Addition-
ally, more sensors other than cameras can be leveraged in the future, 
resulting in a multisensory system that could yield more accurate 
results. Moreover, EmoGlass could be transformed into a snap-on 
device that could retroft existing jewelry or clothing (e.g., caps as 
shown in Figure 13). Finally, we can implement all computation on 
our embedded system and a smartphone with Bluetooth, without 
transmitting data to a server, to reduce users’ concern of privacy. 

Currently, we only rely on facial expression as the single in-
dicator of emotion. In the future, we can make better use of the 
images that are captured, e.g., leveraging the images of the pupil 
to infer emotions that are otherwise hard to read from facial ex-
pressions [8, 9]. Moreover, synthesizing multiple indicators to more 
comprehensively sense emotion is also a problem worth discussing 
in further work. 

While we make the assumption, we admit that facial expressions 
and emotions are not necessarily congruent. Some works in so-
cial psychology argue that the mapping from facial expressions to 
emotions is not necessarily universal, because how people com-
municate anger, disgust, etc, varies substantially across cultures, 
situations, and even across people within a single situation [11]. 
However, although the association may vary with culture and is 
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loose enough to consist of many alternative accounts, the facial 
expressions and emotion labels are associated [73]. Some works 
[20] also claim that social and interpersonal scenes do afect the 
suppression and expression of emotion. However, people will not 
be in these situations all the time. In the future, we can change the 
dataset and algorithm to solve this problem because continuous 
facial expression tracking can distinguish the "true smile" and "fake 
smile" [5]. All in all, there are tons of shreds of evidence supporting 
the coherence between emotion and facial expression [72]. While 
the facial expressions are not equivalent to emotions, using them 
is still a suitable choice to stand for emotion. Additionally, other 
methods of emotion detection, which are introduced in our related 
work, entail complex equipment, such as physiological sensing, 
which can be easily disrupted by noise in the environment and 
user motion. In comparison, sensing facial expressions, which can 
be easily done with computer vision, is more practical in the real 
world. 

Finally, we would like to investigate sensing and logging methods 
that can handle complex emotions – ones that contain multiple 
basic emotions. In fact, participants in our study reported complex 
emotions. We asked participants to describe their overall feelings 
for today before starting the study, and we received two main types 
of responses. One was well-defned basic emotions such as “happy” 
and “unhappy” while the other was more ambiguous, for example, 
“overwhelmed”, “overloaded”, “frustrated” and so on. These results 
indicated that complex emotions are an essential part of people’s 
daily lives and thus important to monitor, which we plan to explore 
in future work. 

9 CONCLUSION 
In this paper, we present EmoGlass, the frst end-to-end AI-enabled 
wearable platform that consists of a pair of facial expression detec-
tion eyeglasses and a mobile application to enable self-monitoring 
of emotion to promote emotional awareness. To improve EmoGlass’ 
robustness in out-of-lab environments, we collected three datasets 
featuring slight changes of camera angle due to remounting, var-
ious lights conditions, and natural expressions rather than posed 
faces in a controlled lab space. We conducted a three-day out-of-lab 
study (N=15) to evaluate the performance of EmoGlass. We also 
iterated our application design based on user feedback in this study. 
We included some unique features in the application to help people 
better understand and regulate their emotions based on personal 
positive triggers. We present a quantitative analysis of our platform 
performance and qualitative fndings based on participants’ feed-
back. Finally, we discuss design recommendations for future work 
on sensing and enhancing awareness of emotional health. Over-
all, we believe that EmoGlass provides a powerful tool through 
which we can generate rich insights for the research community 
to leverage in using wearable sensing to address emotional health 
challenges. 
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